我们在大规模设置中研究一类广义的线性程序(GLP),包括可能简单的非光滑凸规律器和简单的凸集合约束。通过将GLP作为等效凸凹入最大问题的重新介绍,我们表明问题中的线性结构可用于设计高效,可扩展的一阶算法,我们给出了名称\ EMPH {坐标线性方差减少}(\ textsc {clvr};发音为``clever'')。 \ textsc {clvr}是一种增量坐标方法,具有隐式方差差异,输出双变量迭代的\ emph {仿射组合}。 \ textsc {clvr}产生改善的复杂性结果(glp),这取决于(glp)中的线性约束矩阵的最大行标准而不是光谱标准。当正常化术语和约束是可分离的,\ textsc {clvr}承认有效的延迟更新策略,使其复杂性界限与(glp)中的线性约束矩阵的非零元素的数量而不是矩阵尺寸。我们表明,通过引入稀疏连接的辅助变量,可以将基于$ F $ -divergence和Wassersein指标的歧义组的分布稳健优化(DRO)问题进行重新重整为(GLP)。我们补充了我们的理论保证,具有验证我们算法的实际效果的数值实验,无论是在壁钟时间和数据次数方面。
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
translated by 谷歌翻译
The deep learning community has witnessed an exponentially growing interest in self-supervised learning (SSL). However, it still remains unexplored how to build a framework for learning useful representations of raw music waveforms in a self-supervised manner. In this work, we design Music2Vec, a framework exploring different SSL algorithmic components and tricks for music audio recordings. Our model achieves comparable results to the state-of-the-art (SOTA) music SSL model Jukebox, despite being significantly smaller with less than 2% of parameters of the latter. The model will be released on Huggingface(Please refer to: https://huggingface.co/m-a-p/music2vec-v1)
translated by 谷歌翻译
We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a {\it dual-teaching} manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER. Code is available at https://github.com/lemon0830/dualNER.
translated by 谷歌翻译
In the scenario of unsupervised extractive summarization, learning high-quality sentence representations is essential to select salient sentences from the input document. Previous studies focus more on employing statistical approaches or pre-trained language models (PLMs) to extract sentence embeddings, while ignoring the rich information inherent in the heterogeneous types of interaction between words and sentences. In this paper, we are the first to propose an unsupervised extractive summarizaiton method with heterogeneous graph embeddings (HGEs) for Chinese document. A heterogeneous text graph is constructed to capture different granularities of interactions by incorporating graph structural information. Moreover, our proposed graph is general and flexible where additional nodes such as keywords can be easily integrated. Experimental results demonstrate that our method consistently outperforms the strong baseline in three summarization datasets.
translated by 谷歌翻译
This paper presents ReasonFormer, a unified reasoning framework for mirroring the modular and compositional reasoning process of humans in complex decision-making. Inspired by dual-process theory in cognitive science, the representation module (automatic thinking) and reasoning modules (controlled thinking) are decoupled to capture different levels of cognition. Upon the top of the representation module, the pre-trained reasoning modules are modular and professional in specific and fundamental reasoning skills (e.g., logic, simple QA, etc). To mimic the controlled compositional thinking process, different reasoning modules are dynamically activated and composed in both parallel and cascaded manners to control what reasoning skills are activated and how deep the reasoning process will be reached to solve the current problems. The unified reasoning framework solves multiple tasks with a single model, and is trained and inferred in an end-to-end manner. Evaluated on 11 datasets requiring different reasoning skills and complexity, ReasonFormer demonstrates substantial performance boosts, revealing the compositional reasoning ability. Few-shot experiments exhibit better generalization ability by learning to compose pre-trained skills for new tasks with limited data, and decoupling the representation module and the reasoning modules. Further analysis shows the modularity of reasoning modules as different tasks activate distinct reasoning skills at different reasoning depths.
translated by 谷歌翻译
对具有代理商初始位置未知的有限3D环境的多代理探索是一个具有挑战性的问题。它需要快速探索环境,并坚定合并代理商构建的子图。我们认为现有方法是侵略性或保守的:在检测到重叠时,积极的策略合并了两种由不同代理构建的子图,这可能导致由于对重叠的错误阳性检测而导致不正确的合并,因此是如此。不健全。保守策略指导一个代理人在合并之前重新审视另一个代理商的过量验证历史轨迹,这可以降低由于对同一空间的反复探索而引起的勘探效率。为了巧妙地平衡子图合并和勘探效率的鲁棒性,我们为基于激光雷达的多代理探索开发了一种新方法,该方法可以指导一个代理商以\ emph {自适应}方式重复另一个代理商的轨迹子图合并过程的指标。此外,我们的方法通过计划合并子图的代理人共同计划,以进一步提高勘探效率,以\ emph {Cooperative}方式将最近的单格分层勘探策略扩展到多个代理。我们的实验表明,我们的方法平均比基线高出50 \%,同时稳固地合并子映射。
translated by 谷歌翻译
这项工作开发了基于神经网络的预处理,以加速晶格量子场理论中的Wilson-DIRAC正常方程。该方法是针对临界点附近的两种晶格Schwinger模型实现的。在该系统中,发现神经网络预处理可以加速与未经本科系统的溶液或基于偶数或不完整的Cholesky分解的常规方法相比,偶联梯度求解器的收敛性,如降低的降低数量收敛所需的迭代和/或复杂操作。还表明,在具有较小晶格量的合奏上训练的预处理可用于为具有较大晶格量的合奏构建预处理,并且性能最小。这种体积转移技术摊销了训练成本,并为将这种预调节器扩展到具有较大晶格体积和四个维度的晶格场理论计算。
translated by 谷歌翻译
最近基于神经网络的到达方向(DOA)估计算法在未知数的声源场景上表现良好。这些算法通常是通过将多通道音频输入映射到单个输出(即所有来源的总空间伪谱(SP))来实现的,称为MISO。但是,这种误语算法在很大程度上取决于经验阈值设置和声音源之间的角度大于固定角度的角度假设。为了解决这些局限性,我们提出了一种新型的多通道输入和多个输出的DOA网络,称为MIMO-DOANET。与一般的误觉算法不同,Mimo-Doanet借助于信息的空间协方差矩阵预测了每个声源的SPS编码。通过这样做,检测声源数量的阈值任务成为检测每个输出中是否存在声音源的更容易的任务,并且在推理阶段,声源之间的严重交互消失。实验结果表明,与3,4个来源场景中的莫斯科基线相比,MIMO-DOANET的相对增长18.6%和绝对13.3%,相对34.4%和绝对20.2%的F1得分提高。结果还证明了Mimo-Doanet减轻了阈值设置问题,并有效地解决了角度假设问题。
translated by 谷歌翻译